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Abstract

This paper summarizes work performed at NRaD
during FY94 on the integration of robotic sensor
and motor systems1. Two robotic applications
were involved. These are the visual control of a
five degrees of freedom manipulator arm in three
dimensions, and the visual control of a mobile
platform for target acquisition, tracking and
trailing with obstacle avoidance. Solutions to both
applications were constrained by the intentional
restriction that information could only be gained
autonomously by the robot through vision and
proprioception (internal information on
mechanical position). Furthermore, the only visual
information allowed was the frame-to-frame image
flow derived from the contrast gradients. Both
reflexive (reactive) and adaptive (learning)
algorithms were studied.

1 Introduction
 
The overall objectives of this research are to
design, develop, and test an artificial autonomous
visually guided motor system by using adaptive
neural network computer algorithms that explicitly
emulate the functional architecture of known and
hypothesized biological mechanisms. The goal is
to improve target recognition and discrimination
under different transformations of the target
image. The methods that we are exploring to
improve automatic target recognition involve
active perception and self-determined
manipulation of the target, or of the robot platform
relative to the environment.

1This research is supported by the Advanced Research

Projects Agency and the Office of Naval Research under

contract number N0001493WX2D002.

This project expands on earlier Navy work in
autonomous active machine vision [Blackburn et
al., 1987; Blackburn and Nguyen, 1990]. The
machine vision system is being adapted to a stereo
pan, tilt and vergence mechanism, and used to
control a five degree-of-freedom stationary robotic
manipulator arm, and a mobile robot platform. The
project combines vision, navigation and
manipulation to study learning of cross-modal
sensor-sensor and sensor-motor sequences.
Mechanisms to demonstrate a motor (behavioral)
criterion of scale and rotation invariant recognition
are being developed. In addition, the visual-motor
algorithms are being  applied on the mobile robot
to the problem of target discrimination, tracking,
and trailing while on the move. 

The algorithms of active perception employ both
reflexive and adaptive mechanisms. Reflexive
mechanisms provide low level, generic, and fault
tolerant solutions to problems such as target
detection, segmentation, and obstacle avoidance,
while adaptive mechanisms provide intrinsically
modifiable solutions to difficult problems such as
eye-hand calibration and target discrimination. 

2 Visual Control of a Mobile Robot

Figure 1 shows our  mobile robot under visual
control trailing a walking human target. The
circumstances that challenge this task include the
complexity of the background, the proximity of the
target and the velocity of its image on the visual
field, the absence of human assistance or
intervention, the absence of unique distinguishing
features associated with the target, and the
limitations of on-board processing power and
energy resources. Details of the algorithms and
hardware used in this study are reported in a
technical paper contained in this volume
[Blackburn and Nguyen, 1994a].



 

Figure 1. Autonomous visually controlled mobile robot
trailing a walking human in a visually cluttered
environment.

The idea is to solve a difficult problem in a
parsimonious way following the examples of
nature. We assume that natural selection favored
efficiency. The need for parsimony in robotics is
also related to economics. For robots to be
considered viable and accepted into the workplace
they must be cost effective as well as competent.

At the present the robot vision system is the only
means by which we allow the robot to gain the
necessary information about its external
environment. To further restrict the nature of the
available information, we only analyze the image
flow from the contrast gradients. Thus, motion
information alone is available. The autonomous
robot must use this information for multiple
purposes. First the robot must acquire and
maintain a target. A potential target is detected by
motion in the peripheral visual field. Target
acquisition is accomplished through saccades and
smooth pursuit motions utilizing a pan and tilt

mechanism. The target then is defined as any
source of motion that has been placed on the
central region of the receptor surface. Second the
robot must assess the behavior of the target and
respond appropriately. This is the tracking and
trailing task. If the motion in the central region of
the receptor surface is contracting, the target is
assumed to be receding and an approach response
is triggered. If the motion is expanding, the target
is probably looming and the robot’s forward
motion is suspended. Lastly, the robot must
recognize and respond appropriately to non-target
objects (i.e. obstacles) without loosing sight of its
target. Obstacles are defined by any motion on the
peripheral receptor field after a target has been
acquired. Other researchers have divided these
objectives among different sensor modalities,
thereby simplifying the task that must be
accomplished by each sensor system. We accept
our limitations, however, to explore the full
potential of vision in the control of the mobile
robot.

Two significant related problems were
encountered in this work. First is the maintenance
of the target on the center of the visual field.
Second is the detection of the moving target while
the robot itself is moving through a visually
complex environment. Only partial solutions to
both problems have been achieved. 

We use a receptor surface that has an
inhomogeneous resolution. Like the biological
retina, we incorporate a high resolution fovea and
a peripheral retina whose resolution decreases as a
function of eccentricity. A log-polar
transformation is used to sample, integrate, and
map the receptor input to our computational plane.
This architecture is an efficient means of data
compression as only the central region is analyzed
in detail. There are other advantages as well. The
larger receptive fields in the periphery integrate
contrast changes, increasing sensitivity to jiggle,
and provide a larger separation for sampling the
higher velocities that are expected there. 

In a mechanism such as ours that depends on
target motion for detection, acquisition and
evaluation, the successful localization and pursuit
of the target means that the target is stabilized on
the center of the receptor surface. Stabilization
occurs when the target motion is minimized, and
this eliminates the information upon which the
target is maintained so that the target may
disappear. Due to the inhomogeneous resolution of



the receptor surface, the central region has a
greater sensitivity to slow motion than does the
peripheral region. Targets located at a distance
may be pursued by the vision system without
generating competing motion in the periphery.
However, when the vehicle is underway, the self-
induced optic flow is problematical to smooth
pursuit of a slowly moving target. 

The second problem results from the competitive
mechanisms that select the best candidate for a
target. Motion again is the criterion. A moving
platform creates relative motion on its sensor
surface in the presence of visual contrast from both
foreground and background objects. This induced
motion tends to be correlated however and thus
may be predictable with self awareness of self
motion. A moving target on the other hand can
have an unpredictable velocity on the sensor
surface. We developed a motion segmentation
algorithm, based on a biological model, that takes
advantage both of predictability and of local
consistency. Local center surround mechanisms on
the motion field reduce the effects of correlated
motion, and enhance unique motion. Furthermore,
self-awareness of auto-motion in one direction can
be used to reduce sensitivity to optic flow in the
opposite direction. This inhibitory process
conflicts, however, with the mechanism of target
maintenance on the central region because it
eliminates necessary feedback for pursuit velocity.
Therefore, the central region has been exempted
from auto-motion inhibition. 

While on the move, the robot vision system can
detect targets that are also in motion. The
mechanism of motion segmentation favors the
unique motion of the target. Additionally, the
network is almost never without a target. The
camera is attracted to static objects during auto-
motion. These are only ignored after stabilization
when they fail to further move. Camera
stabilization during auto-motion further reduces
the induced optic flow of the static background,
favoring the acquisition of animate targets. 

The stabilization mechanism is as yet unreliable in
our implementation because of the poor
performance of the smooth pursuit system.
Currently, the maintenance of a moving target
from a moving platform is more successfully
performed by small corrective saccades because
the pursuit system cannot keep up with the induced
velocities. 

For obstacle avoidance an advantage is gained
with the velocities that accompany auto motion.
Nearby obstacles result in easily detected flow on
the peripheral retina. The lateral imbalance in this
flow is used to maneuver the robot around the
obstacles.

The algorithms for visual motion analysis and
robot control were sufficiently efficient to run on
the robot at eight frames per second using a pair of
i860 co-processors in parallel with an 80486 PC
located onboard the mobile robot. Much of this
time is consumed in importing the image frame to
the i860s from the frame grabber and in the
definition of the local receptive fields. The use of a
vision chip that could perform the data reduction
of the log-polar mapping prior to digitization
would greatly increase frame rates.

To improve trailing performance we need better
methods to maintain the fix or attention on a
moving target from a moving robot while avoiding
obstacles. Some memory for the target’s position
and behavior may allow recovery of the target
after the vehicle has been deflected by an obstacle.
Some pattern processing that would uniquely mark
the target could also help to maintain attention.

The ability to detect and track a moving target
while the robot platform is itself on the move has
many applications among which are autonomous
automobile navigation, battlefield unmanned
forward observers, and automated factory or
warehouse material distribution. The common
element in all of these applications is the relief of a
human operator from the burden of maintaining
attention to the tasks of target acquisition and
maintenance, and of navigation through a complex
and unpredictable environment.

3 Robot Visual Control of a Manipulator
Arm in Three Dimensions

Figure 2 shows our mobile robot parked before a
manipulator arm, over which it has assumed visual
control. The problem addressed in this
configuration is the visual direction of the
manipulator arm following a process that learned
the inverse kinematics model. This is a difficult
problem because the solutions can be non-unique,
the information available can be noisy, and because
the system calibration can change over time.
Several researchers have already addressed similar
problems, developing adaptive algorithms to learn
the inverse kinematics [Kuperstein and Rubinstein,



1989; Martinetz and Schulten, 1990; Li and
Ogmen, 1994]. We have made modest
improvements to these methods that enhance
learning rates and accuracy, while reducing
computational complexity. The details of our work
on this problem are also available in a technical
report contained in this volume [Blackburn and
Nguyen, 1994b].

Figure 2. Adaptive autonomous visual control of a robot
manipulator arm. 

Work in three dimensions requires information on
target position in X, Y and Z. A single camera can
provide in a straight forward way the information
on X and Y, and through active perception,
information on the relative depth of objects, based
primarily on motion parallax and occlusions. Two
cameras in binocular vision provide additional
information on absolute depth through vergence
measures and on relative depth through location
disparities in the projections. Primate vision
systems acquire and locate targets and direct arm
motion using both binocular and monocular vision,
plus motion analysis. The architecture of the retina
and the log-polar mapping of the receptor surface
to the visual cortex permit a simple analysis of
depth or relative positions of objects in the visual
field. The vergence that results from the fixation of
both eyes on a selected target eliminates the
binocular disparity of the target, but allows the
assessment of the location of objects in the vicinity
of the target. One such object of great importance
for our purposes is the end-effector of the
manipulator arm as it reaches for the target. We use
pan/tilt/vergence information of a foveated target
to locate the target in the 3D coordinate system of
the robot and direct the ballistic phase of the robot
manipulator arm end-effector to the target location.
Then in the final phase of reaching, we use the
relative motion of the end-effector on the two
retinae to correct any reaching errors and bring the

end-effector exactly onto the target. The control
parameters of both phases of reaching to a target
are learned by the robot through experience.

Four adaptive neural network algorithms were
developed and compared for stereo control of
reaching using a simulated 3 degree of freedom
manipulator arm. The network architectures
included the standard three layer perceptron with
Back Propagation learning, a two layer perceptron
with preprocessing using vertex-normal features, a
Kohonen self-organizing map, and an associative
mapping of distributed representations of
manipulator and camera joint  space with
population coding. The performances of all
adaptive algorithms were superior to a look-up
table given the same numbers of  exemplars.
Reaching accuracy differed among the algorithms,
but was primarily a function of network
complexity and training time. The most efficient
algorithm was the two layer perceptron with
vertex-normal feature preprocessing. The vertex-
normal feature preprocessing eliminated the need
for one adaptive layer (the hidden layer) that is
requisite for non-linear mappings in the three layer
perceptron. Consequently, back propagation of
error learning was not required, and the permitted
use of the simpler delta rule learning greatly
increased learning rates and run-time adaptability. 

The addition of a second error correction strategy
that involved learning of velocity correlations
under continuous visual feedback reduced errors to
an arbitrarily small degree and obviated the need
for either large networks, large numbers of
exemplars, or large training times.

The mobile robot manipulator arm system of
Figure 2 presents difficulties in initial calibration
as well as in the maintenance of calibration. It is
not efficient to learn the calibration anew each time
the robot rolls up to the arm. We need to develop
adaptive calibration methods for arbitrary
configurations of the vision system and
manipulator arm. To accomplish this the control
algorithms could search the visual space for frames
of reference and compute the transformations of
the image data needed for invariant association
with the motor output.

While waiting for a stereo vision pan, tilt and
vergence mechanism to arrive from the
manufacturer, we developed an active laser/vision
triangulation mechanism for target depth
discrimination. This system requires saccades to



each point in space from which absolute depth
information is desired. The returned data substitute
for the missing vergence information of a binocular
system, but does not directly provide the relative
depth information necessary to visually servo the
arm end-effector into the target.

4 Invariant Recognition through Active
Perception

Sensor-motor integration, in one form commonly
known as eye-hand coordination, is a process that
permits the system to make and test hypotheses
about objects in the environment. In a sense, nature
invented the scientific method for the nervous
system to use as a means to predict and prepare for
significant events. A reactive organism must
depend on speed to survive, but a predictive system
can avoid problems altogether. 

The motor component of perception compensates
for an uncooperative environment. Not only does
the use of effectors provide mobility, but it alters
the information available, uncovering new
opportunities to exploit. Random motion can
achieve this, but at a cost in energy expenditure
and at the cost of opening the host to exploitation.
Neither does random motion permit the testing of
the spatial relationships of information. The
development of purposive movement allows the
host to judiciously act in the environment and
sample the results. Prediction forms the basis of the
judgement to act, and the results are used to
formulate new predictions. The successful match
of prediction and results, just as in the scientific
method, increases certainty of the validity of the
hypothesis or the prediction and can lead to new
predictions and new associated actions. An action-
sensation-prediction-action chain is established
through experience and conditioned learning that
allows the organism to efficiently meet its
metabolic needs, survive and procreate.

We demonstrated previously how an artificial
vision system could learn such a sequence
[Blackburn and Nguyen, 1990]. One behavioral
piece of evidence for the action-sensation-
prediction sequence is the scan path. The scan path
is a sequence of eye (or camera) saccades that
sample a target in a regular way to collect
information. Figure 3 shows scan paths that were
produced by our artificial vision system before and
after a period of learning. The path in (a), made
before learning,  is the result of random saccades to
regions of high information (defined by image

complexity). The path in (b) resulted from the
interaction of learned expectation and the available
features. The scan path after learning became more
regular and the inter-saccade interval was reduced
compared to the naive state. The sequential visits
to the three locations on the sailboat represent the
"recognition" of the image and its associated
appropriate behavior in the most simple sense. 

   
(b)(a)

Figure 3. Scan paths of a naive network (a) and of a
experienced network (b) to a static line drawing of boat.
Arrows indicate direction of saccades. New target
regions of the image were detected by small oscillations
of the receptor surface, and selected competitively in the
superior colliculus model network. Learning, based on
experience scanning the image, provided a bias from the
cortex to the superior colliculus that favored the regions
of visual space from which the most likely (expected)
saccade targets could be selected. 

We propose that to achieve invariant recognition,
an appropriate behavior must be transformed by
the image parameters. For the example of a scan
path behavior to an image that is presented at
different sizes, the saccade amplitudes must be
modulated. This could be accomplished by the use
of a scale factor derived from some independent
measure of image size, however, the topographical
mapping that is  common in the nervous system
permits a natural rescaling of saccade amplitude
based upon the locus of activity on the output map.
To change the locus of activity, it is only necessary
to match the expectation from the associative map
with the available sensor information. It is the
expectation that must be size invariant. We
approached this by developing a progression of
abstract processing stages that integrated features
from lower stages to the most abstract relationships
that are then stored in associative memory
[Blackburn, 1992]. This pathway is paralleled by a
progression of processing stages in reverse that
accomplishes feature reconstruction. The
information is passed outward, providing an
increasing degree of spatial specificity when gated
by the forward sequence of feature integrators. 



Figure 4 shows the development of a scan path to a
simple square that is changing size. For the
individual network that experienced the moving
square, the activation of complex features in the
highest associative processing layers resulting from
the selected locations on the image would
constitute its invariant perception of a square. The
evidence that squares of different sizes are
perceived similarly is that the scan paths are
similar.
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Figure 4. Simulated scan path of a square during
changes in size.  In this example the size of the square
oscillated three times over a range of  four hundred
percent. Each arrowhead represents the visual rest point
between saccades. The vision system developed this
scan path after a period of learning in which motion and
pattern information were combined to predict the
changes in features that occurred as the image changed
in size. The concentration of rest points, due to repeated
visits to regions of the square, indicate a non-random
scan of the image or one that resulted from a learned
expectation of what the square looked like irrespective
of size.

The key mechanism in our model of this process is
the integration of pattern and motion information.
As information moves deeper through the
processing stages the size parameters become less
specific (or more invariant) while the motion
parameters become more specific. The importance
of specific motion information at high levels in the
visual processing is to predict changes in
observable features given the behavior of the
target. For example, by experience we have learned
that two eyes should appear when a face turns to
meet us. The observed motion of the head cues the
expectation of new features. When these features
appear, the face is recognized. 

Even a target that has not moved during the scan
can be made to reveal critical information by

deliberate motion of the observer in relation to it.
Humans deal with most inanimate targets in this
way. Objects are viewed from different
perspectives, or picked up and examined. We plan
to use the manipulator arm in just this role. Under
visual control, the arm will be directed to grasp,
rotate, or otherwise justify an object to the
perceptual expectations of the machine vision
system. This work is in progress.
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